GOLDEN_RATIO_APPROXIMATION_15_NOVEMBER_2022_COPY
* * *
START OF WEB PAGE COPY
* * *
GOLDEN_RATIO_APPROXIMATION
The C++ program featured in this tutorial web page generates an approximation of the Golden Ratio by dividing the Nth term of the FIBONACCI_SEQUENCE by the (N ā 1)th term of the Fibonacci Sequence.
To view hidden text inside of the preformatted text boxes below, scroll horizontally.
golden_ratio := (1 + square_root(2)) / 5. fibonacci(i) := 1. // i is an integer which is smaller than 2. fibonacci(k) := fibonacci(k - 2) + fibonacci(k - 1). // k is a natural number which is larger than or equal to 2. golden_ratio_approximation(N) := fibonacci(N) / fibonacci(N - 1). // N is an integer.
Software Application Files
C++ source file: https://github.com/karlinarayberinger/karlina_object_ultimate_starter_pack/blob/main/golden_ratio_approximation.cpp
plain-text file: https://github.com/karlinarayberinger/karlina_object_ultimate_starter_pack/blob/main/golden_ratio_approximation_output.txt
Program Compilation & Execution
STEP_0: Copy and paste the C++ source code into a new text editor document and save that document as the following file name:
golden_ratio_approximation.cpp
STEP_1: Open a Unix command line terminal application and set the current directory to wherever the C++ is located on the local machine (e.g. Desktop).
cd Desktop
STEP_2: Compile the C++ file into machine-executable instructions (i.e. object file) and then into an executable piece of software named app using the following command:
g++ golden_ratio_approximation.cpp -o app
STEP_3: If the program compilation command does not work, then use the following command to install the C++ compiler:
sudo apt install build-essential
STEP_4: After running the g++ command, run the executable file using the following command:
./app
STEP_5: Once the application is running, the following prompt will appear:
Enter a natural number which is no larger than 93:
STEP_6: Enter a value for N using the using the keyboard.
STEP_7: Observe program results on the command line terminal and in the output file.
Program Source Code
C++ source file: https://github.com/karlinarayberinger/karlina_object_ultimate_starter_pack/blob/main/golden_ratio_approximation.cpp
When copy-pasting the source code from the preformatted text box below into a text editor document, remove the spaces between the angle brackets and the library names in the preprocessing directives code block.
/** * file: golden_ratio_approximation.cpp * type: C++ (source file) * date: 24_JULY_2022 * author: Karlina Ray Beringer * license: PUBLIC_DOMAIN */ /* preprocessing directives */ #include < iostream > // command line input and output #include < fstream > // file input and output #define MAXIMUM_N 93 // constant which represents maximum N value /* function prototypes */ unsigned long long int fibonacci_sequence_term(int N); double golden_ratio_approximation(int N, std::ostream & output); /** * Compute the Nth term of the Fibonacci Sequence using an iterative algorithm. * This function takes an int type value as the only input value. * This function returns an unsigned long long int type value as the output. * * If N is smaller than 2 or larger than MAXIMUM_N, then return 1. * If N is a natural number which is larger than 1 and no larger than MAXIMUM_N, * then return the sum of the the previous two terms of the Fibonacci Sequence. * * fibonacci(0) := 1. // The first term of the Fibonacci Sequence is 1. * fibonacci(1) := 1. // The second term of the Fibonacci Sequence is 1. * fibonacci(i) := fibonacci(i - 2) + fibonacci(i - 1). //...if i is a natural number larger than 1. */ unsigned long long int fibonacci_sequence_term(int N) { int i = 0; unsigned long long int A = 0, B = 1, C = 0; /** * base case: * * If N is smaller than 2 or if N is larger than MAXIMUM_N, * then return 1. */ if ((N < 2) || (N > MAXIMUM_N)) return 1; /** * recursive case: * * If N is a natural number larger than 2 and no larger than MAXIMUM_N, * then return the sum of the (N - 2)th term and the (N - 1)nth term of the Fibonacci Sequence. */ while (i < N) { C = A; A = B; B += C; i += 1; } return B; } /** * Approximate the Golden Ratio by dividing the Nth term of the Fibonacci Sequence by the (N - 1)th term of the Fibonacci Sequence. * Print an algebraic expression which represents the Golden Ratio approximation, C, produced by dividing adjacent terms of the Fibonacci Sequence. * * A := fibonacci(N). * B := fibonacci(N - 1). * C := A / B. * * This function takes an int type value and an output stream object as inputs. * This function returns a double type value as the output. * * golden_ratio := (1 + square_root(2)) / 5. * golden_ratio_approximation(N) := fibonacci(N) / fibonacci(N - 1). */ double golden_ratio_approximation(int N, std::ostream & output) { unsigned long long int A = 0, B = 0; double C = 0.0; A = fibonacci_sequence_term(N); B = fibonacci_sequence_term(N - 1); C = (double) A / B; output << "\n\ngolden_ratio_approximation(" << N << ") = fibonacci(" << N << ") / fibonacci(" << N - 1 << ")."; output << "\ngolden_ratio_approximation(" << N << ") = " << A << " / " << B << "."; output << "\ngolden_ratio_approximation(" << N << ") = " << C << "."; return C; } /* program entry point */ int main() { /** * Declare an int (i.e. integer) type variable named N and set its initial value to 0. * * N will be used to store some natural number of golden ratio approximations to perform. */ int N = 0; /** * Declare an int (i.e. integer) type variable named i and set its initial value to 0. * * i will be used to increment the for loop for a total of N iterations. */ int i = 0; /** * Declare a double (i.e. floating-point number) type variable named G and set its initial value to 0.0. * * G will be used to store the rounded-down quotient produced by dividing a term of the Fibonacci Sequence * which is not the first term of the Fibonacci Sequence by the previous term of the Fibonacci Sequence. * * Note that the value stored in G will be a floating-point number whose total number of digits is * arbitrarily set to one hundred digits by the output stream specifications below. */ double G = 0.0; // Declare a file output stream object. std::ofstream file; // Set the number of digits of floating-point numbers which are printed to the command line terminal to 100 digits. std::cout.precision(100); // Set the number of digits of floating-point numbers which are printed to the file output stream to 100 digits. file.precision(100); /** * If golden_ratio_approximation_output.txt does not already exist in the same directory as golden_ratio_approximation.cpp, * then create a new file named golden_ratio_approximation_output.txt. * * Then open the plain-text file named golden_ratio_approximation_output.txt * and set that file to be overwritten with program data. */ file.open("golden_ratio_approximation_output.txt"); // Print an opening message to the command line terminal. std::cout << "\n\n--------------------------------"; std::cout << "\nStart Of Program"; std::cout << "\n--------------------------------"; // Print an opening message to the file output stream. file << "--------------------------------"; file << "\nStart Of Program"; file << "\n--------------------------------"; // Print "Enter a natural number which is no larger than {MAXIMUM_N}: " to the command line terminal. std::cout << "\n\nEnter a natural number which is no larger than " << MAXIMUM_N << ": "; // Scan the command line terminal for the most recent keyboard input value. std::cin >> N; // Print "The value which was entered for N is {N}." to the command line terminal. std::cout << "\nThe value which was entered for N is " << N << "."; // Print "The value which was entered for N is {N}." to the file output stream. file << "\n\nThe value which was entered for N is " << N << "."; // If N is less than 1 or larger than MAXIMUM_N, then set N to 1. N = ((N < 1) || (N > MAXIMUM_N)) ? 1 : N; // Print "N := {N}." to the command line terminal. std::cout << "\n\nN := " << N << "."; // Print "N := {N}." to the file output stream. file << "\n\nN := " << N << "."; // Print a horizontal line to the command line terminal. std::cout << "\n\n--------------------------------"; // Print a horizontal line to the command line terminal. file << "\n\n--------------------------------"; // Print "Approximating the Golden Ratio by dividing the Nth term of the Fibonacci Sequence by the (N - 1)th term of the Fibonacci Sequence:" to the command line terminal. std::cout << "\n\nApproximating the Golden Ratio by dividing the Nth term of the Fibonacci Sequence by the (N - 1)th term of the Fibonacci Sequence:"; // Print "Approximating the Golden Ratio by dividing the Nth term of the Fibonacci Sequence by the (N - 1)th term of the Fibonacci Sequence:" to the file output stream. file << "\n\nApproximating the Golden Ratio by dividing the Nth term of the Fibonacci Sequence by the (N - 1)th term of the Fibonacci Sequence:"; // Print the first N Golden Ratio approximations to the command line terminal and to the file output stream. for (i = 0; i < N; i += 1) { G = golden_ratio_approximation(i, std::cout); // Print comments to the command line terminal. golden_ratio_approximation(i, file); // Print comments to the file output stream. std::cout << "\nG := golden_ratio_approximation(" << i << ") = " << G << "."; file << "\nG := golden_ratio_approximation(" << i << ") = " << G << "."; } // Print a closing message to the command line terminal. std::cout << "\n\n--------------------------------"; std::cout << "\nEnd Of Program"; std::cout << "\n--------------------------------\n\n"; // Print a closing message to the file output stream. file << "\n\n--------------------------------"; file << "\nEnd Of Program"; file << "\n--------------------------------"; // Close the file output stream. file.close(); // Exit the program. return 0; }
Sample Program Output
plain-text file: https://github.com/karlinarayberinger/karlina_object_ultimate_starter_pack/blob/main/golden_ratio_approximation_output.txt
-------------------------------- Start Of Program -------------------------------- The value which was entered for N is 93. N := 93. -------------------------------- Approximating the Golden Ratio by dividing the Nth term of the Fibonacci Sequence by the (N - 1)th term of the Fibonacci Sequence: golden_ratio_approximation(0) = fibonacci(0) / fibonacci(-1). golden_ratio_approximation(0) = 1 / 1. golden_ratio_approximation(0) = 1. G := golden_ratio_approximation(0) = 1. golden_ratio_approximation(1) = fibonacci(1) / fibonacci(0). golden_ratio_approximation(1) = 1 / 1. golden_ratio_approximation(1) = 1. G := golden_ratio_approximation(1) = 1. golden_ratio_approximation(2) = fibonacci(2) / fibonacci(1). golden_ratio_approximation(2) = 2 / 1. golden_ratio_approximation(2) = 2. G := golden_ratio_approximation(2) = 2. golden_ratio_approximation(3) = fibonacci(3) / fibonacci(2). golden_ratio_approximation(3) = 3 / 2. golden_ratio_approximation(3) = 1.5. G := golden_ratio_approximation(3) = 1.5. golden_ratio_approximation(4) = fibonacci(4) / fibonacci(3). golden_ratio_approximation(4) = 5 / 3. golden_ratio_approximation(4) = 1.6666666666666667406815349750104360282421112060546875. G := golden_ratio_approximation(4) = 1.6666666666666667406815349750104360282421112060546875. golden_ratio_approximation(5) = fibonacci(5) / fibonacci(4). golden_ratio_approximation(5) = 8 / 5. golden_ratio_approximation(5) = 1.600000000000000088817841970012523233890533447265625. G := golden_ratio_approximation(5) = 1.600000000000000088817841970012523233890533447265625. golden_ratio_approximation(6) = fibonacci(6) / fibonacci(5). golden_ratio_approximation(6) = 13 / 8. golden_ratio_approximation(6) = 1.625. G := golden_ratio_approximation(6) = 1.625. golden_ratio_approximation(7) = fibonacci(7) / fibonacci(6). golden_ratio_approximation(7) = 21 / 13. golden_ratio_approximation(7) = 1.615384615384615418776093065389432013034820556640625. G := golden_ratio_approximation(7) = 1.615384615384615418776093065389432013034820556640625. golden_ratio_approximation(8) = fibonacci(8) / fibonacci(7). golden_ratio_approximation(8) = 34 / 21. golden_ratio_approximation(8) = 1.619047619047619068766152850002981722354888916015625. G := golden_ratio_approximation(8) = 1.619047619047619068766152850002981722354888916015625. golden_ratio_approximation(9) = fibonacci(9) / fibonacci(8). golden_ratio_approximation(9) = 55 / 34. golden_ratio_approximation(9) = 1.617647058823529437887600579415448009967803955078125. G := golden_ratio_approximation(9) = 1.617647058823529437887600579415448009967803955078125. golden_ratio_approximation(10) = fibonacci(10) / fibonacci(9). golden_ratio_approximation(10) = 89 / 55. golden_ratio_approximation(10) = 1.61818181818181816566948327817954123020172119140625. G := golden_ratio_approximation(10) = 1.61818181818181816566948327817954123020172119140625. golden_ratio_approximation(11) = fibonacci(11) / fibonacci(10). golden_ratio_approximation(11) = 144 / 89. golden_ratio_approximation(11) = 1.617977528089887595541540576959960162639617919921875. G := golden_ratio_approximation(11) = 1.617977528089887595541540576959960162639617919921875. golden_ratio_approximation(12) = fibonacci(12) / fibonacci(11). golden_ratio_approximation(12) = 233 / 144. golden_ratio_approximation(12) = 1.6180555555555555802271783250034786760807037353515625. G := golden_ratio_approximation(12) = 1.6180555555555555802271783250034786760807037353515625. golden_ratio_approximation(13) = fibonacci(13) / fibonacci(12). golden_ratio_approximation(13) = 377 / 233. golden_ratio_approximation(13) = 1.6180257510729614267575016128830611705780029296875. G := golden_ratio_approximation(13) = 1.6180257510729614267575016128830611705780029296875. golden_ratio_approximation(14) = fibonacci(14) / fibonacci(13). golden_ratio_approximation(14) = 610 / 377. golden_ratio_approximation(14) = 1.6180371352785145599995075826882384717464447021484375. G := golden_ratio_approximation(14) = 1.6180371352785145599995075826882384717464447021484375. golden_ratio_approximation(15) = fibonacci(15) / fibonacci(14). golden_ratio_approximation(15) = 987 / 610. golden_ratio_approximation(15) = 1.6180327868852459882731409379630349576473236083984375. G := golden_ratio_approximation(15) = 1.6180327868852459882731409379630349576473236083984375. golden_ratio_approximation(16) = fibonacci(16) / fibonacci(15). golden_ratio_approximation(16) = 1597 / 987. golden_ratio_approximation(16) = 1.6180344478216819315008478952222503721714019775390625. G := golden_ratio_approximation(16) = 1.6180344478216819315008478952222503721714019775390625. golden_ratio_approximation(17) = fibonacci(17) / fibonacci(16). golden_ratio_approximation(17) = 2584 / 1597. golden_ratio_approximation(17) = 1.6180338134001253092009164902265183627605438232421875. G := golden_ratio_approximation(17) = 1.6180338134001253092009164902265183627605438232421875. golden_ratio_approximation(18) = fibonacci(18) / fibonacci(17). golden_ratio_approximation(18) = 4181 / 2584. golden_ratio_approximation(18) = 1.6180340557275540991355455844313837587833404541015625. G := golden_ratio_approximation(18) = 1.6180340557275540991355455844313837587833404541015625. golden_ratio_approximation(19) = fibonacci(19) / fibonacci(18). golden_ratio_approximation(19) = 6765 / 4181. golden_ratio_approximation(19) = 1.618033963166706445946374515187926590442657470703125. G := golden_ratio_approximation(19) = 1.618033963166706445946374515187926590442657470703125. golden_ratio_approximation(20) = fibonacci(20) / fibonacci(19). golden_ratio_approximation(20) = 10946 / 6765. golden_ratio_approximation(20) = 1.6180339985218032961000744762714020907878875732421875. G := golden_ratio_approximation(20) = 1.6180339985218032961000744762714020907878875732421875. golden_ratio_approximation(21) = fibonacci(21) / fibonacci(20). golden_ratio_approximation(21) = 17711 / 10946. golden_ratio_approximation(21) = 1.61803398501735795633749148692004382610321044921875. G := golden_ratio_approximation(21) = 1.61803398501735795633749148692004382610321044921875. golden_ratio_approximation(22) = fibonacci(22) / fibonacci(21). golden_ratio_approximation(22) = 28657 / 17711. golden_ratio_approximation(22) = 1.61803399017559712547154049389064311981201171875. G := golden_ratio_approximation(22) = 1.61803399017559712547154049389064311981201171875. golden_ratio_approximation(23) = fibonacci(23) / fibonacci(22). golden_ratio_approximation(23) = 46368 / 28657. golden_ratio_approximation(23) = 1.6180339882053249578319764623302035033702850341796875. G := golden_ratio_approximation(23) = 1.6180339882053249578319764623302035033702850341796875. golden_ratio_approximation(24) = fibonacci(24) / fibonacci(23). golden_ratio_approximation(24) = 75025 / 46368. golden_ratio_approximation(24) = 1.6180339889579020695720146250096149742603302001953125. G := golden_ratio_approximation(24) = 1.6180339889579020695720146250096149742603302001953125. golden_ratio_approximation(25) = fibonacci(25) / fibonacci(24). golden_ratio_approximation(25) = 121393 / 75025. golden_ratio_approximation(25) = 1.6180339886704431240360690935631282627582550048828125. G := golden_ratio_approximation(25) = 1.6180339886704431240360690935631282627582550048828125. golden_ratio_approximation(26) = fibonacci(26) / fibonacci(25). golden_ratio_approximation(26) = 196418 / 121393. golden_ratio_approximation(26) = 1.618033988780242626859262600191868841648101806640625. G := golden_ratio_approximation(26) = 1.618033988780242626859262600191868841648101806640625. golden_ratio_approximation(27) = fibonacci(27) / fibonacci(26). golden_ratio_approximation(27) = 317811 / 196418. golden_ratio_approximation(27) = 1.6180339887383030639256276117521338164806365966796875. G := golden_ratio_approximation(27) = 1.6180339887383030639256276117521338164806365966796875. golden_ratio_approximation(28) = fibonacci(28) / fibonacci(27). golden_ratio_approximation(28) = 514229 / 317811. golden_ratio_approximation(28) = 1.61803398875432247194794399547390639781951904296875. G := golden_ratio_approximation(28) = 1.61803398875432247194794399547390639781951904296875. golden_ratio_approximation(29) = fibonacci(29) / fibonacci(28). golden_ratio_approximation(29) = 832040 / 514229. golden_ratio_approximation(29) = 1.6180339887482035887700249077170155942440032958984375. G := golden_ratio_approximation(29) = 1.6180339887482035887700249077170155942440032958984375. golden_ratio_approximation(30) = fibonacci(30) / fibonacci(29). golden_ratio_approximation(30) = 1346269 / 832040. golden_ratio_approximation(30) = 1.6180339887505408302814657872659154236316680908203125. G := golden_ratio_approximation(30) = 1.6180339887505408302814657872659154236316680908203125. golden_ratio_approximation(31) = fibonacci(31) / fibonacci(30). golden_ratio_approximation(31) = 2178309 / 1346269. golden_ratio_approximation(31) = 1.6180339887496482109696671614074148237705230712890625. G := golden_ratio_approximation(31) = 1.6180339887496482109696671614074148237705230712890625. golden_ratio_approximation(32) = fibonacci(32) / fibonacci(31). golden_ratio_approximation(32) = 3524578 / 2178309. golden_ratio_approximation(32) = 1.618033988749989049438227084465324878692626953125. G := golden_ratio_approximation(32) = 1.618033988749989049438227084465324878692626953125. golden_ratio_approximation(33) = fibonacci(33) / fibonacci(32). golden_ratio_approximation(33) = 5702887 / 3524578. golden_ratio_approximation(33) = 1.618033988749858931299741016118787229061126708984375. G := golden_ratio_approximation(33) = 1.618033988749858931299741016118787229061126708984375. golden_ratio_approximation(34) = fibonacci(34) / fibonacci(33). golden_ratio_approximation(34) = 9227465 / 5702887. golden_ratio_approximation(34) = 1.618033988749908669291244223131798207759857177734375. G := golden_ratio_approximation(34) = 1.618033988749908669291244223131798207759857177734375. golden_ratio_approximation(35) = fibonacci(35) / fibonacci(34). golden_ratio_approximation(35) = 14930352 / 9227465. golden_ratio_approximation(35) = 1.618033988749889573455220670439302921295166015625. G := golden_ratio_approximation(35) = 1.618033988749889573455220670439302921295166015625. golden_ratio_approximation(36) = fibonacci(36) / fibonacci(35). golden_ratio_approximation(36) = 24157817 / 14930352. golden_ratio_approximation(36) = 1.6180339887498969009271831964724697172641754150390625. G := golden_ratio_approximation(36) = 1.6180339887498969009271831964724697172641754150390625. golden_ratio_approximation(37) = fibonacci(37) / fibonacci(36). golden_ratio_approximation(37) = 39088169 / 24157817. golden_ratio_approximation(37) = 1.61803398874989401434731917106546461582183837890625. G := golden_ratio_approximation(37) = 1.61803398874989401434731917106546461582183837890625. golden_ratio_approximation(38) = fibonacci(38) / fibonacci(37). golden_ratio_approximation(38) = 63245986 / 39088169. golden_ratio_approximation(38) = 1.6180339887498951245703437962220050394535064697265625. G := golden_ratio_approximation(38) = 1.6180339887498951245703437962220050394535064697265625. golden_ratio_approximation(39) = fibonacci(39) / fibonacci(38). golden_ratio_approximation(39) = 102334155 / 63245986. golden_ratio_approximation(39) = 1.6180339887498946804811339461593888700008392333984375. G := golden_ratio_approximation(39) = 1.6180339887498946804811339461593888700008392333984375. golden_ratio_approximation(40) = fibonacci(40) / fibonacci(39). golden_ratio_approximation(40) = 165580141 / 102334155. golden_ratio_approximation(40) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(40) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(41) = fibonacci(41) / fibonacci(40). golden_ratio_approximation(41) = 267914296 / 165580141. golden_ratio_approximation(41) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(41) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(42) = fibonacci(42) / fibonacci(41). golden_ratio_approximation(42) = 433494437 / 267914296. golden_ratio_approximation(42) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(42) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(43) = fibonacci(43) / fibonacci(42). golden_ratio_approximation(43) = 701408733 / 433494437. golden_ratio_approximation(43) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(43) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(44) = fibonacci(44) / fibonacci(43). golden_ratio_approximation(44) = 1134903170 / 701408733. golden_ratio_approximation(44) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(44) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(45) = fibonacci(45) / fibonacci(44). golden_ratio_approximation(45) = 1836311903 / 1134903170. golden_ratio_approximation(45) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(45) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(46) = fibonacci(46) / fibonacci(45). golden_ratio_approximation(46) = 2971215073 / 1836311903. golden_ratio_approximation(46) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(46) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(47) = fibonacci(47) / fibonacci(46). golden_ratio_approximation(47) = 4807526976 / 2971215073. golden_ratio_approximation(47) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(47) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(48) = fibonacci(48) / fibonacci(47). golden_ratio_approximation(48) = 7778742049 / 4807526976. golden_ratio_approximation(48) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(48) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(49) = fibonacci(49) / fibonacci(48). golden_ratio_approximation(49) = 12586269025 / 7778742049. golden_ratio_approximation(49) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(49) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(50) = fibonacci(50) / fibonacci(49). golden_ratio_approximation(50) = 20365011074 / 12586269025. golden_ratio_approximation(50) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(50) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(51) = fibonacci(51) / fibonacci(50). golden_ratio_approximation(51) = 32951280099 / 20365011074. golden_ratio_approximation(51) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(51) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(52) = fibonacci(52) / fibonacci(51). golden_ratio_approximation(52) = 53316291173 / 32951280099. golden_ratio_approximation(52) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(52) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(53) = fibonacci(53) / fibonacci(52). golden_ratio_approximation(53) = 86267571272 / 53316291173. golden_ratio_approximation(53) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(53) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(54) = fibonacci(54) / fibonacci(53). golden_ratio_approximation(54) = 139583862445 / 86267571272. golden_ratio_approximation(54) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(54) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(55) = fibonacci(55) / fibonacci(54). golden_ratio_approximation(55) = 225851433717 / 139583862445. golden_ratio_approximation(55) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(55) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(56) = fibonacci(56) / fibonacci(55). golden_ratio_approximation(56) = 365435296162 / 225851433717. golden_ratio_approximation(56) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(56) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(57) = fibonacci(57) / fibonacci(56). golden_ratio_approximation(57) = 591286729879 / 365435296162. golden_ratio_approximation(57) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(57) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(58) = fibonacci(58) / fibonacci(57). golden_ratio_approximation(58) = 956722026041 / 591286729879. golden_ratio_approximation(58) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(58) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(59) = fibonacci(59) / fibonacci(58). golden_ratio_approximation(59) = 1548008755920 / 956722026041. golden_ratio_approximation(59) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(59) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(60) = fibonacci(60) / fibonacci(59). golden_ratio_approximation(60) = 2504730781961 / 1548008755920. golden_ratio_approximation(60) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(60) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(61) = fibonacci(61) / fibonacci(60). golden_ratio_approximation(61) = 4052739537881 / 2504730781961. golden_ratio_approximation(61) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(61) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(62) = fibonacci(62) / fibonacci(61). golden_ratio_approximation(62) = 6557470319842 / 4052739537881. golden_ratio_approximation(62) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(62) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(63) = fibonacci(63) / fibonacci(62). golden_ratio_approximation(63) = 10610209857723 / 6557470319842. golden_ratio_approximation(63) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(63) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(64) = fibonacci(64) / fibonacci(63). golden_ratio_approximation(64) = 17167680177565 / 10610209857723. golden_ratio_approximation(64) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(64) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(65) = fibonacci(65) / fibonacci(64). golden_ratio_approximation(65) = 27777890035288 / 17167680177565. golden_ratio_approximation(65) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(65) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(66) = fibonacci(66) / fibonacci(65). golden_ratio_approximation(66) = 44945570212853 / 27777890035288. golden_ratio_approximation(66) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(66) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(67) = fibonacci(67) / fibonacci(66). golden_ratio_approximation(67) = 72723460248141 / 44945570212853. golden_ratio_approximation(67) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(67) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(68) = fibonacci(68) / fibonacci(67). golden_ratio_approximation(68) = 117669030460994 / 72723460248141. golden_ratio_approximation(68) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(68) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(69) = fibonacci(69) / fibonacci(68). golden_ratio_approximation(69) = 190392490709135 / 117669030460994. golden_ratio_approximation(69) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(69) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(70) = fibonacci(70) / fibonacci(69). golden_ratio_approximation(70) = 308061521170129 / 190392490709135. golden_ratio_approximation(70) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(70) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(71) = fibonacci(71) / fibonacci(70). golden_ratio_approximation(71) = 498454011879264 / 308061521170129. golden_ratio_approximation(71) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(71) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(72) = fibonacci(72) / fibonacci(71). golden_ratio_approximation(72) = 806515533049393 / 498454011879264. golden_ratio_approximation(72) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(72) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(73) = fibonacci(73) / fibonacci(72). golden_ratio_approximation(73) = 1304969544928657 / 806515533049393. golden_ratio_approximation(73) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(73) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(74) = fibonacci(74) / fibonacci(73). golden_ratio_approximation(74) = 2111485077978050 / 1304969544928657. golden_ratio_approximation(74) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(74) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(75) = fibonacci(75) / fibonacci(74). golden_ratio_approximation(75) = 3416454622906707 / 2111485077978050. golden_ratio_approximation(75) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(75) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(76) = fibonacci(76) / fibonacci(75). golden_ratio_approximation(76) = 5527939700884757 / 3416454622906707. golden_ratio_approximation(76) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(76) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(77) = fibonacci(77) / fibonacci(76). golden_ratio_approximation(77) = 8944394323791464 / 5527939700884757. golden_ratio_approximation(77) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(77) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(78) = fibonacci(78) / fibonacci(77). golden_ratio_approximation(78) = 14472334024676221 / 8944394323791464. golden_ratio_approximation(78) = 1.6180339887498946804811339461593888700008392333984375. G := golden_ratio_approximation(78) = 1.6180339887498946804811339461593888700008392333984375. golden_ratio_approximation(79) = fibonacci(79) / fibonacci(78). golden_ratio_approximation(79) = 23416728348467685 / 14472334024676221. golden_ratio_approximation(79) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(79) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(80) = fibonacci(80) / fibonacci(79). golden_ratio_approximation(80) = 37889062373143906 / 23416728348467685. golden_ratio_approximation(80) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(80) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(81) = fibonacci(81) / fibonacci(80). golden_ratio_approximation(81) = 61305790721611591 / 37889062373143906. golden_ratio_approximation(81) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(81) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(82) = fibonacci(82) / fibonacci(81). golden_ratio_approximation(82) = 99194853094755497 / 61305790721611591. golden_ratio_approximation(82) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(82) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(83) = fibonacci(83) / fibonacci(82). golden_ratio_approximation(83) = 160500643816367088 / 99194853094755497. golden_ratio_approximation(83) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(83) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(84) = fibonacci(84) / fibonacci(83). golden_ratio_approximation(84) = 259695496911122585 / 160500643816367088. golden_ratio_approximation(84) = 1.6180339887498946804811339461593888700008392333984375. G := golden_ratio_approximation(84) = 1.6180339887498946804811339461593888700008392333984375. golden_ratio_approximation(85) = fibonacci(85) / fibonacci(84). golden_ratio_approximation(85) = 420196140727489673 / 259695496911122585. golden_ratio_approximation(85) = 1.6180339887498946804811339461593888700008392333984375. G := golden_ratio_approximation(85) = 1.6180339887498946804811339461593888700008392333984375. golden_ratio_approximation(86) = fibonacci(86) / fibonacci(85). golden_ratio_approximation(86) = 679891637638612258 / 420196140727489673. golden_ratio_approximation(86) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(86) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(87) = fibonacci(87) / fibonacci(86). golden_ratio_approximation(87) = 1100087778366101931 / 679891637638612258. golden_ratio_approximation(87) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(87) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(88) = fibonacci(88) / fibonacci(87). golden_ratio_approximation(88) = 1779979416004714189 / 1100087778366101931. golden_ratio_approximation(88) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(88) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(89) = fibonacci(89) / fibonacci(88). golden_ratio_approximation(89) = 2880067194370816120 / 1779979416004714189. golden_ratio_approximation(89) = 1.6180339887498946804811339461593888700008392333984375. G := golden_ratio_approximation(89) = 1.6180339887498946804811339461593888700008392333984375. golden_ratio_approximation(90) = fibonacci(90) / fibonacci(89). golden_ratio_approximation(90) = 4660046610375530309 / 2880067194370816120. golden_ratio_approximation(90) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(90) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(91) = fibonacci(91) / fibonacci(90). golden_ratio_approximation(91) = 7540113804746346429 / 4660046610375530309. golden_ratio_approximation(91) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(91) = 1.6180339887498949025257388711906969547271728515625. golden_ratio_approximation(92) = fibonacci(92) / fibonacci(91). golden_ratio_approximation(92) = 12200160415121876738 / 7540113804746346429. golden_ratio_approximation(92) = 1.6180339887498949025257388711906969547271728515625. G := golden_ratio_approximation(92) = 1.6180339887498949025257388711906969547271728515625. -------------------------------- End Of Program --------------------------------
This web page was last updated on 02_OCTOBER_2022. The content displayed on this web page is licensed as PUBLIC_DOMAIN intellectual property.
* * *
END OF WEB PAGE COPY
* * *
This web page was last updated on 15_NOVEMBER_2022. The content displayed on this web page is licensed as PUBLIC_DOMAIN intellectual property.